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Motivation

Much of machine learning is heavily dependent on computational
power

Many libraries exist that aim to reduce computational time

TensorFlow

Spark

Well-designed algorithms also speed up computation
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Dynamic Programming

Dynamic Programming is a programming/algorithmic technique
that leverages previous computations to save computation time

Can be applied when a problem has the following properties:

Optimal substructure

Overlapping subproblems

Examples include:

Fibonacci Numbers

Viterbi Algorithm

Forward/Backward Algorithm
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Aside: why the name ‘Dynamic Programming’?

From Richard Bellman’s autobiography:

I spent the Fall quarter (of 1950) at RAND. My first task was to
find a name for multistage decision processes. An interesting
question is, ‘Where did the name, dynamic programming, come
from?’ The 1950s were not good years for mathematical research.
We had a very interesting gentleman in Washington named Wilson.
He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word, research...His face would suffuse, he
would turn red, and he would get violent if people used the term,
research, in his presence. You can imagine how he felt, then, about
the term, mathematical. The RAND Corporation was employed by
the Air Force, and the Air Force had Wilson as its boss, essentially.
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Aside: why the name ‘Dynamic Programming’?

Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the
RAND Corporation. ... I decided therefore to use the word,
‘programming.’ I wanted to get across the idea that this was
dynamic, this was multistage, this was time-varying—I thought,
let’s kill two birds with one stone. Let’s take a word that has an
absolutely precise meaning, namely dynamic, in the classical
physical sense. It also has a very interesting property as an
adjective, and that is it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some combination that will
possibly give it a pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I used it as
an umbrella for my activities.
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Optimal Substructure

What does it mean for a problem to exhibit the optimal
substructure property?

Solution to optimization problem can be solved by combining
optimal solutions to subproblems

Example

Mergesort and Quicksort both display the optimal substructure
property

Optimal substructure is associated with recursion and
divide-and-conquer strategies
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Overlapping Subproblems

What does it mean for a problem to exhibit the overlapping
subproblems property?

Problem can be broken down into subproblems which use each
other’s results

Subproblems’ results are reused repeatedly to solve the main
optimization problem

Example

Mergesort and Quicksort do not display the overlapping
subproblems property

Ellen Feldman and Avishek Dutta Dynamic Programming



Overlapping Subproblems

What does it mean for a problem to exhibit the overlapping
subproblems property?

Problem can be broken down into subproblems which use each
other’s results

Subproblems’ results are reused repeatedly to solve the main
optimization problem

Example

Mergesort and Quicksort do not display the overlapping
subproblems property

Ellen Feldman and Avishek Dutta Dynamic Programming



Overlapping Subproblems

What does it mean for a problem to exhibit the overlapping
subproblems property?

Problem can be broken down into subproblems which use each
other’s results

Subproblems’ results are reused repeatedly to solve the main
optimization problem

Example

Mergesort and Quicksort do not display the overlapping
subproblems property

Ellen Feldman and Avishek Dutta Dynamic Programming



Relationship between Optimal Substructure, Overlapping
Subproblems, and Dynamic Programming

Note: Optimal substructure is a pre-condition for the overlapping
subproblems property!

Optimal substructure: obtain optimal solution by combining
optimal solutions to subproblems

Divide-and-conquer approach, e.g. Mergesort

Overlapping subproblems: subproblems reuse each other’s
results in the computation process

E.g. Fibonacci, Viterbi, forward/backward algorithms

Dynamic programming: store and leverage previous
computations to save computation time

Would not be helpful for optimal substructure-only
case—overkill!
With overlapping subproblems: can reduce runtime from
exponential to polynomial time
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Fibonacci Numbers: An Example

Let’s see an example of where the optimal substructure and
overlapping subproblems properties are helpful.

Write a function to find the n-th Fibonacci number.

Fn = Fn−1 + Fn−2

where F2 = 1 and F1 = 1

Example

def naive_fib(n):

if n == 1 or n == 2:

return 1

else:

return naive_fib(n-1) + naive_fib(n-2)
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Fibonacci Numbers

How does the computation break down?
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Fibonacci Numbers

Optimal substructure? Overlapping subproblems?
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Fibonacci Numbers

So we can use Dynamic Programming.

Two main approaches for implementing Dynamic Programming:

Top-down

Bottom-up

Top-down: solve recursively, storing previous computations for
later use

Bottom-up: build a table of subproblem results (starting with base
cases) that grows until we reach solution
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Top-down Fibonacci Numbers

Recursively solve, storing results of subproblems as we go

Example

table = {}

def top_down_fib(n):

if n in table:

return table[n]

else:

if n == 1 or n == 2:

table[n] = 1

else:

table[n] = top_down_fib(n-1) + top_down_fib(n-2)

return table[n]
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Top-down Fibonacci Numbers

What’s the computation path?

Ellen Feldman and Avishek Dutta Dynamic Programming



Bottom-up Fibonacci Numbers

Build a table of subproblem results, starting from the base cases

Example

def bottom_up_fib(n):

if n == 1 or n == 2:

return 1

else:

table = [0, 1, 1]

for i in range(3, n+1):

table.append(table[i-1] + table[i-2])

return table[n]
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Bottom-up Fibonacci Numbers

What’s the computation path?

fib(1) fib(2) fib(3) fib(4) fib(5) fib(6)

1 1 2 3 5 8
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Fibonacci Numbers

What did dynamic programming accomplish here?

Reduces the number of computations and overall time complexity

O(2n)→ O(n)

Dramatic speedup, especially for large n
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Fun fact: Fibonacci numbers show up in nature!

Reference: Bohannon, John. “Sunflowers Show Complex Fibonacci
Sequences.” News from Science, 2016,
http://www.sciencemag.org/news/2016/05/

sunflowers-show-complex-fibonacci-sequences.
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Hidden Markov Models

Now, let’s see how dynamic programming helps us with HMMs

Recall that with a 1st-order HMM

P(x, y) = P(End | yM)
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i )

P(x i | y i )→ probability of state y i generating emission x i

P(y i | y i−1)→ probability of state y i−1 transitioning to y i

P(y1 | y0)→ probability of the start state

P(End | yM)→ optional
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Viterbi Algorithm

P(x, y) = P(End | yM)
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i )

Suppose we have a length-M sequence of emissions, x. How can
we find the length-M sequence of states, y, for which P(x, y) is
maximized?

Consider the naive solution:
y∗ = arg max

y
logP(y | x) = arg max

y
logP(x, y).

This requires evaluating LM sequences if there are L possible states.

This is too slow. Can we do better?
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Dynamic Programming for Viterbi Algorithm

Can we use Dynamic Programming to find the most probable state
sequence y? Why?

This problem has the optimal substructure and overlapping
subproblem properties.

To understand this, let’s move to a more concrete example

Suppose that x is a sentence and y is the corresponding
part-of-speech (POS) tag sequence.

y i ∈ S = {N = Noun,V = Verb,D = Adverb}
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Dynamic Programming for Viterbi Algorithm

S = {N = Noun,V = Verb,D = Adverb}, L = |S | = 3

Problem: Given a sentence x = x1:M , find the sequence y∗ of POS
tags that maximizes P(x, y)

Approach: Let ŷja be the most-probable length-j sequence ending
in state a ∈ S .
Find L sequences ŷMa of POS tags maximizing P(x, ŷMa ):

ŷMN = y1y2 . . . yM−1N

ŷMV = y1y2 . . . yM−1V

ŷMD = y1y2 . . . yM−1D

Then, y∗ = arg max
y=ŷMa ,a∈S

P(x, y)

Ellen Feldman and Avishek Dutta Dynamic Programming



Dynamic Programming for Viterbi Algorithm

S = {N = Noun,V = Verb,D = Adverb}, L = |S | = 3

Problem: Given a sentence x = x1:M , find the sequence y∗ of POS
tags that maximizes P(x, y)
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ŷMD = y1y2 . . . yM−1D

Then, y∗ = arg max
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Approach: Let ŷja be the most-probable length-j sequence ending
in state a ∈ S .
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Optimal Substructure in Viterbi Algorithm

Problem: Find ŷMN , ŷMV , and ŷMD

Subproblem: Given a length-(M − 1) sentence x1:M−1, find L
sequences, ŷM−1a , of POS tags that maximize P(x1:M−1, ŷM−1a ),
one of each ending in {N,V ,D}:

ŷM−1N = y1y2 . . . yM−2N

ŷM−1V = y1y2 . . . yM−2V

ŷM−1D = y1y2 . . . yM−2D

How can we use the optimal solution to this subproblem to solve
the problem stated above?
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one of each ending in {N,V ,D}:
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Optimal Substructure in Viterbi Algorithm

Optimal solutions to subproblems:{
ŷM−1N , ŷM−1V , ŷM−1D

}
=

{
ŷM−1a |a ∈ S

}

Optimal solution to overall problem:

ŷMN =

{
arg max

y∈ŷM−1
a ,a∈S

P(x1:M , y ⊕ N)

}
⊕ N

ŷMV =

{
arg max

y∈ŷM−1
a ,a∈S

P(x1:M , y ⊕ V )

}
⊕ V

ŷMD =

{
arg max

y∈ŷM−1
a ,a∈S

P(x1:M , y ⊕ D)

}
⊕ D

where ⊕ is concatenation
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Optimal Substructure in Viterbi Algorithm

Why does this give us the optimal solution?

ŷMN =

{
arg max

y∈ŷM−1
a ,a∈S

P(x1:M , y ⊕ N)

}
⊕ N

Because of the structure of the model:

P(x1:M−1, y1:M−1) =
M−1∏
i=1

P(y i | y i−1)
M−1∏
i=1

P(x i | y i )

P(x1:M , y1:M) =
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i )
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Optimal Substructure in Viterbi Algorithm

Prove optimal substructure by contradiction: suppose that ŷMN was
formed using some length-(M - 1) y /∈ {ŷM−1a |a ∈ S}

This y must end in some a ∈ S = {N,V ,D}. Without loss of
generality, assume y ends in N.

P(x1:M , y1:M) = P(x1:M−1, y1:M−1)P(yM | yM−1)P(xM | yM)

≤ P(x1:M−1, ŷM−1N )P(yM | yM−1)P(xM | yM)

So, we can replace y with ŷM−1a to get better (i.e. more probable)
ŷMN .
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≤ P(x1:M−1, ŷM−1N )P(yM | yM−1)P(xM | yM)
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Overlapping Subproblems in Viterbi Algorithm

Our problem has the optimal substructure property. We can also
see that it has the overlapping subproblems property:

ŷMN =

{
arg max

y=ŷM−1
a ,a∈S

P(x1:M , y ⊕ N)

}
⊕ N

ŷMV =

{
arg max

y=ŷM−1
a ,a∈S

P(x1:M , y ⊕ V )

}
⊕ V

ŷMD =

{
arg max

y=ŷM−1
a ,a∈S

P(x1:M , y ⊕ D)

}
⊕ D
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Dynamic Programming in Viterbi Algorithm

Now we understand why we can use dynamic programming for this
problem. But how do we do it?

Use a bottom-up approach. Build a table of solutions to the
suproblems. Extend the table until we have ŷMN , ŷMV , ŷMD .

How do we start?

ŷ1N = N

ŷ1V = V

ŷ1D = D
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Dynamic Programming in Viterbi Algorithm

a is some part of speech, a ∈ S = {N,V ,D}

ŷia =

{
arg max

y=ŷi−1
a ,a∈S

P(x1:i , y ⊕ a)

}
⊕ a

=

{
arg max

y=ŷi−1
a ,a∈S

P(x1:i−1, y)P(y i = a | y i−1)P(x i | y i = a)

}
⊕ a

1 2 . . . M-1 M

N N VN . . . . . . N . . . VN

V V VV . . . . . . V . . . DV

D D ND . . . . . . D . . . DD
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y=ŷi−1
a ,a∈S

P(x1:i , y ⊕ a)

}
⊕ a

=

{
arg max

y=ŷi−1
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Applications of the Viterbi Algorithm

Computational linguistics, natural language processing

Part-of-speech tagging

Speech recognition, synthesis, and enhancement algorithms

Telecommunications

Cell phones, radio, satellites, wireless networks

Bioinformatics

Genome sequencing, modeling families of proteins
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Computing Marginal Probabilities: Forward/Backward
Algorithm

Now let’s shift gears and talk about the Forward/Backward
Algorithm

For unsupervised training of HMMs, we need to be able to
compute the terms,

P(y i = z | x) and P(y i = b, y i−1 = a | x)

These expressions can be written in terms of αa(i) and βb(i):

αa(i) ∝ P(x1:i , y i = a)

βb(i) ∝ P(xi+1:M | y i = b)
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Forward Algorithm

Problem: Compute αa(i) ∝ P(x1:i , y i = a) for all a, i .

Naive solution: sum over all possible sequences y1:i−1:

αa(i) ∝
∑
y1:i−1

P(x1:i , y i = a, y1:i−1)

This is too slow. Can we apply dynamic programming here? Yes!

Let’s see how the αa(i) terms exhibit optimal substructure and
overlapping subproblems.
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Optimal Substructure in Forward Algorithm

First, let’s see how to build αa(i) from αa(i − 1)

Recall: y i ∈ S = {N,V ,D}

αa(i) ∝ P(x1:i , y i = a) =
∑
a′∈S

P(x1:i , y i = a, y i−1 = a′)

=
∑
a′∈S

P(x1:i−1, y i−1 = a′)P(y i = a | y i−1 = a′)P(x i | y i = a)

∝
∑
a′∈S

αa′(i − 1)P(y i = a | y i−1 = a′)P(x i | y i = a)

αa(i) =
∑
a′∈S

αa′(i − 1)P(y i = a | y i−1 = a′)P(x i | y i = a)
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Optimal Substructure in Forward Algorithm

Remember: αa(i − 1) ∝ P(x1:i−1, y i−1 = a)

‘Optimal’ solutions for the subproblems:

αN(i) = P(x i | y i = N)
∑
a∈S

αa(i − 1)P(y i = N | y i−1 = a)

αV (i) = P(x i | y i = V )
∑
a∈S

αa(i − 1)P(y i = V | y i−1 = a)

αD(i) = P(x i | y i = D)
∑
a∈S

αa(i − 1)P(y i = D | y i−1 = a)
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Overlapping Subproblems in Forward Algorithm

Remember: αa(i − 1) ∝ P(x1:i−1, y i−1 = a)

As in the Viterbi Algorithm, we can see the overlapping
subproblems here as well:

αN(i) = P(x i | y i = N)
∑
a∈S

αa(i − 1)P(y i = N | y i−1 = a)

αV (i) = P(x i | y i = V )
∑
a∈S

αa(i − 1)P(y i = V | y i−1 = a)

αD(i) = P(x i | y i = D)
∑
a∈S

αa(i − 1)P(y i = D | y i−1 = a)
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Dynamic Programming in Forward Algorithm

Now we’ve confirmed that we can use dynamic programming for
this problem. But how do we do it?

Again, use a bottom-up approach. Build a table of solutions to
subproblems, i.e. a table of αa(i) values for all a, i

How do we start?

αN(1) = P(x1:1, y1 = N) = P(x1 | y1 = N)P(y1 = N | y0)

αV (1) = P(x1:1, y1 = V ) = P(x1 | y1 = V )P(y1 = V | y0)

αD(1) = P(x1:1, y1 = D) = P(x1 | y1 = D)P(y1 = D | y0)

Proceed from here using the equations from the previous page
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Backward Algorithm

Problem: Compute βb(i) ∝ P(xi+1:M | yi = b) for all b, i .

Naive solution: sum over all possible sequences yi+1:M :

βb(i) ∝
∑
yi+1:M

P(xi+1:M , yi+1:M | y i = b)

This is too slow. Can we apply dynamic programming here? Yes!

Let’s see how the βb(i) terms exhibit optimal substructure and
overlapping subproblems.
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Optimal Substructure in Backward Algorithm

Remember: βb(i + 1) ∝ P(xi+2:M | y i+1 = b)

Similarly to the αa(i) values, we can also recursively define βb(i):

βb(i) =
∑
b′∈S

βb′(i + 1)P(y i+1 = b′ | y i = b)P(x i+1 | y i+1 = b′)

‘Optimal’ solutions for the subproblems:

βN(i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = N)P(x i+1 | y i+1 = b)

βV (i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = V )P(x i+1 | y i+1 = b)

βD(i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = D)P(x i+1 | y i+1 = b)
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Overlapping Subproblems in Backward Algorithm

Remember: βb(i + 1) ∝ P(xi+2:M | y i+1 = b)

As in the Viterbi and forward algorithms, we can see the
overlapping subproblems property:

βN(i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = N)P(x i+1 | y i+1 = b)

βV (i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = V )P(x i+1 | y i+1 = b)

βD(i) =
∑
b∈S

βb(i + 1)P(y i+1 = b | y i = D)P(x i+1 | y i+1 = b)
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Dynamic Programming in Backward Algorithm

Now we’ve confirmed that we can use dynamic programming for
this problem. But how do we do it?

Again, use a bottom-up approach. Build a table of solutions to
subproblems, i.e. a table of βb(i) values for all b, i

How do we start?

βN(M) = P(xM+1:M | yM = N) = 1

βV (M) = P(xM+1:M | yM = V ) = 1

βD(M) = P(xM+1:M | yM = D) = 1

Initialize as 1, then proceed backward using the equations from
the previous slides
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Thanks for joining!

Questions?
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