
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 4 January 31th, 2019

Policies

• Due 9 PM February 6nd 2019.

• Note: both the moodle submission AND Gradescope submissions must be submitted by the deadline.

• You are free to collaborate on all the problems, subject to the collaboration policy stated in the syllabus.

• In order to conform to the Gradescope submission guidelines, please structure your report so that
each subproblem (e.g. 1A, 1B, 1C, etc.) appears on its own page.

• You should submit all code used in the homework. We ask that you use Python 3 and sklearn version
0.19 for your code, and that you comment your code such that the TAs can follow along and run it
without any issues.

• This set requires the installation of both Tensorflow and Keras. There will be a recitation and office
hour dedicated to helping you install these packages if you have problems.

Submission Instructions
PLEASE NOTE that there are two steps to submitting your Problem Set. Both must be submitted by the
deadline. For the course’s late submission policy, please refer to the course website.

• Please submit your report as a single .pdf file to Gradescope (entry code 9EJKYV), under ”Set 1
Report”. In the report, include any images generated by your code along with your answers to
the questions. For instructions specifically pertaining to the Gradescope submission process, see
https://www.gradescope.com/get_started#student-submission.

• Please submit your code as a .zip archive to Moodle, with filename LastnameFirstname.zip (re-
placing Lastname with your last name and Firstname with your first name). The .zip file should
contain your code files. Submit your code either as Jupyter notebook .ipynb files or .py files.
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1 Deep Learning Principles [35 Points]
Relevant materials: lectures on deep learning

For problems A and B, we’ll be utilizing the Tensorflow Playground to visualize/fit a neural network.

Problem A [5 points]: Backpropagation and Weight Initialization Part 1

Fit the neural network at this link for about 250 iterations, and then do the same for the neural network at
this link. Both networks have the same architecture and use ReLU activations. The only difference between
the two is how the layer weights were initialized – you can examine the layer weights by hovering over the
edges between neurons.

Give a mathematical justification, based on what you know about the backpropagation algorithm and the
ReLU function, for the difference in the performance of the two networks.

Problem B [5 points]: Backpropagation and Weight Initialization Part 2

Reset the two demos from part i (there is a reset button to the left of the “Run” button), change the activation
functions of the neurons to sigmoid instead of ReLU, and train each of them for 4000 iterations.

Explain the differences in the models learned, and the speed at which they were learned, from those of part
i in terms of the backpropagation algorithm and the sigmoid function.

Problem C: [10 Points]

When training any model using SGD, it’s important to shuffle your data to avoid correlated samples. To
illustrate one reason for this that is particularly important for ReLU networks, consider a dataset of 1000
points, 500 of which have positive (+1) labels, and 500 of which have negative (-1) labels. What happens
if we train a fully-connected network with ReLU activations using SGD, looping through all the negative
examples before any of the positive examples? (Hint: this is called the “dying ReLU” problem.)

Problem D: Approximating Functions Part 1 [7 Points]

Draw or describe a fully-connected network with ReLU units that implements the OR function on two 0/1-
valued inputs, x1 and x2. Your networks should contain the minimum number of hidden units possible.
The OR function OR(x1, x2) is defined as:

OR(1, 0) ≥ 1

OR(0, 1) ≥ 1

OR(1, 1) ≥ 1

OR(0, 0) = 0

Your network need only produce the correct output when x1 ∈ {0, 1} and x2 ∈ {0, 1} (as described in the
examples above).

Problem E: Approximating Functions Part 2 [8 Points]
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What is the minimum number of fully-connected layers (with ReLU units) needed to implement an XOR of
two 0/1-valued inputs x1, x2? Recall that the XOR function is defined as:

XOR(1, 0) ≥ 1

XOR(0, 1) ≥ 1

XOR(0, 0) = XOR(1, 1) = 0

For the purposes of this problem, we say that a network f computes the XOR function if f(x1, x2) =

XOR(x1, x2) when x1 ∈ {0, 1} and x2 ∈ {0, 1} (as described in the examples above).

Explain why a network with fewer layers than the number you specified cannot compute XOR.
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2 Depth vs Width on the MNIST Dataset [25 Points]
Relevant Materials: Lectures on Deep Learning

MNIST is a classic dataset in computer vision. It consists of images of handwritten digits (0 - 9) and the
correct digit classification. In this problem you will implement a deep network using Keras to classify
MNIST digits. Specifically, you will explore what it really means for a network to be ”deep”, and how
depth vs. width impacts the classification accuracy of a model. You will be allowed at most N hidden
units, and will be expected to design and implement a deep network that meets some performance baseline
on the MNIST dataset.

Problem A: Installation [2 Points]

Before any modeling can begin, Tensorflow and Keras must be installed. Tensorflow is a mathematical
optimization framework that is widely used in machine learning. Keras is a python package that provides
an easy programming interface for constructing neural networks, and uses Tensorflow under the hood.

To install Tensorflow, follow the steps on https://www.tensorflow.org/get_started/os_setup.
We recommend using the Anaconda install instructions if you installed python via the Anaconda distribu-
tion, or using the Pip install instructions if you didn’t.

To install Keras, we recommend you simply use pip install keras. If you want to install Keras under the
version of Python you get by running python3, you can run python3 -m pip install keras. For further
installation instructions look at https://keras.io/#installation.

Once you have finished installing, write down the version numbers for both Tensorflow and Keras that you
have installed.

Problem B: The Data [1 Point]

Load the MNIST dataset using Keras; see the problem 2 sample code for how.

Describe the input data. What are the dimensions of the images? What do the values in each array index
represent? You can use the imshow function in matplotlib if you’d like to see the actual pictures (see the
sample code).

Problem C: One-Hot Encoding [2 Points]

The labels in the data loaded via Keras are values between 0 and 9 corresponding to the digit represented
by each image. This is nice and readable for we as humans, but to a neural network it might seem like an
image containing a 9 is somehow “bigger” than one containing a 0, and that an image containing an 8 is
somehow “closer” to one containing a 9 than an image containing a 1.

To convert our dataset to a form suitable for multiclass classification, we use one-hot encoding. This encod-
ing scheme transforms each label y into a length-10 binary vector v where v[y] = 1, v[i] = 0 for i 6= y. For
example, the the one-hot encoding of label 3 is the vector [0, 0, 0, 1, 0, 0, 0, 0, 0, 0].
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Use the keras function keras.utils.np utils.to categorical to one-hot encode the labels of the entire dataset.
Also, reshape your inputs to be a single vector instead of a 2-dimensional image using numpy.reshape. (To
use these functions properly, read the keras and/or numpy documentation – reading documentation is the
most important software engineering skill!)

What is the new shape of your training input?

Problem D: Modeling Part 1 [8 Points]

Using Keras’s ”Sequential” model class, build a deep network to classify the handwritten digits. You may
only use the following layers:

• Dense: A fully-connected layer

• Activation (ReLU): Sets negative weights to 0

• Activation (Softmax): Sets highest weight to 1, rest to 0

• Dropout: Takes some probability and at every iteration sets weights to zero at random with that
probability (effectively regularization)

A sample network with 20 hidden units is in the sample code file. (Note: Activation, Dropout, and your
last Dense(NB CLASSES) layer do not count toward your hidden unit count, because the final layer is
“observed” and not hidden.)

Use categorical cross entropy as your loss function. There are also a number of optimizers you can use
(an optimizer is just a fancier version of SGD), and feel free to play around with them, but RMSprop and
Adam are the most popular and will probably work best. You also should find the batch size and number
of epochs that give you the best results (default is batch size = 32, epochs=10).

Look at the sample code to see how to compile and train your model. Keras should make it very easy to
tinker with your network architecture.

Your task. Using at most 100 hidden units, build a network using only the allowed layers that achieves test
accuracy of at least 0.975. Turn in the code of your model as well as the best test accuracy that it achieved.

Hint: for best results on this problem and the two following problems, normalize the input vectors by
dividing the values by 255 (as the pixel values range from 0 to 255).

Problem E: Modeling Part 2 [6 Points]

Repeat problem C, except that now you may use 200 hidden units and must build a model with at least 2
hidden layers that achieves test accuracy of at least 0.98.

Problem F: Modeling Part 3 [6 Points]

Repeat problem C, except that now you may use 1000 hidden units and must build a model with at least 3
hidden layers that achieves test accuracy of at least 0.983.
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3 Convolutional Neural Networks [40 Points]
Relevant Materials: Lecture on CNNs

Problem A: Zero Padding [5 Points]

Consider a convolutional network in which we perform a convolution over each 8 × 8 patch of a 20 × 20

input image. It is common to zero-pad input images to allow for convolutions past the edges of the images.
An example of zero-padding is shown below:

Figure: A convolution being applied to a 2 × 2 patch (the red square) of a 3 × 3 image that has been zero-padded to

allow convolutions past the edges of the image.

What is one benefit and one drawback to this zero-padding scheme (in contrast to an approach in which
we only perform convolutions over patches entirely contained within an image)?

5 x 5 Convolutions

Consider a single convolutional layer, where your input is a 32× 32 pixel, RGB image. In other words, the
input is a 32× 32× 3 tensor. Your convolution has:

• Size: 5× 5× 3

• Filters: 8

• Stride: 1

• No zero-padding

Problem B [2 points]: What is the number of parameters (weights) in this layer, including a bias term?

Problem C [3 points]: What is the shape of the output tensor?
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Max/Average Pooling

Pooling is a downsampling technique for reducing the dimensionality of a layer’s output. Pooling iterates
across patches of an image similarly to a convolution, but pooling and convolutional layers compute their
outputs differently: given a pooling layer B with preceding layer A, the output of B is some function (such
as the max or average functions) applied to patches of A’s output.

Below is an example of max-pooling on a 2-D input space with a 2× 2 filter (the max function is applied to
2× 2 patches of the input) and a stride of 2 (so that the sampled patches do not overlap):

Average pooling is similar except that you would take the average of each patch as its output instead of the
maximum.

Consider the following 4 matrices:
1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

 ,


0 1 1 1

0 1 1 1

0 1 1 1

0 0 0 0

 ,


0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

 ,


0 0 0 0

1 1 1 0

1 1 1 0

1 1 1 0



Problem D [3 points]:

Apply 2× 2 average pooling with a stride of 2 to each of the above images.

Problem E [3 points]:

Apply 2× 2 max pooling with a stride of 2 to each of the above images.

Problem F [4 points]:

Consider a scenario in which we wish to classify a dataset of images of various animals, taken at various
angles/locations and containing small amounts of noise (e.g. some pixels may be missing). Why might
pooling be advantageous given these distortions in our dataset?
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Keras implementation

Problem G [20 points]:

Using Keras’s “Sequential” model class as you did in 2C, build a deep convolutional network to classify the
handwritten digits in MNIST. You are now allowed to use the following layers (but only the following):

• Dense: A fully-connected layer

– In convolutional networks, Dense layers are typically used to knit together higher-level feature
representations.

– Particularly useful to map the 2D features resulting from the last convolutional layer to categories
for classification (like the 1000 categories of ImageNet or the 10 categories of MNIST).

– Inefficient use of parameters and often overkill: for A input activations and B output activations,
number of parameters needed scales as O(AB).

• Conv2D: A 2-dimensional convolutional layer

– The bread and butter of convolutional networks, conv layers impose a translational-invariance
prior on a fully-connected network. By sliding filters across the image to form another image,
conv layers perform “coarse-graining” of the image.

– Networking several convolutional layers in succession helps the convolutional network knit to-
gether more abstract representations of the input. As you go higher in a convolutional network,
activations represent pixels, then edges, colors, and finally objects.

– More efficient use of parameters. For N filters of K × K size on an input of size L × L, the
number of parameters needed scales as O(NK2). When N,K are small, this can often beat the
O(L4) scaling of a Dense layer applied to the L2 pixels in the image.

• MaxPooling2D: A 2-dimensional max-pooling layer

– Another way of performing “coarse-graining” of images, max-pool layers are another way of
ignoring finer-grained details by only considering maximum activations over small patches of
the input.

– Drastically reduces the input size. Useful for reducing the number of parameters in your model.

– Typically used immediately following a series of convolutional-activation layers.

• BatchNormalization: Performs batch normalization (Ioffe and Szegedy, 2014). Normalizes the acti-
vations of previous layer to standard normal (mean 0, standard deviation 1).

– Accelerates convergence and improves performance of model, especially when saturating non-
linearities (sigmoid) are used.

– Makes model less sensitive to higher learning rates and initialization, and also acts as a form of
regularization.
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– Typically used immediately before nonlinearity (Activation) layers.

• Dropout: Takes some probability and at every iteration sets weights to zero at random with that
probability

– An effective form of regularization. During training, randomly selecting activations to shut off
forces network to build in redundancies in the feature representation, so it does not rely on any
single activation to perform classification.

• Activation (ReLU): Sets negative weights to 0

• Activation (Softmax): Sets highest weight to 1, rest to 0

• Flatten: Flattens any tensor into a single vector (required in order to pass a 2D tensor output from a
convolutional layer as input into Dense layers)

Your tasks. Build a network with only the allowed layers that achieves test accuracy of at least 0.985. You
are required to use categorical cross entropy as your loss function and to train for 10 epochs with a batch
size of 32. Note: your model must have fewer than 1 million parameters, as measured by ‘model.count -
params()’. Everything else can change: optimizer (RMSProp, Adam, ???), initial learning rates, dropout
probabilities, layerwise regularizer strengths, etc. You are not required to use all of the layers, but you must
have at least one dropout layer and one batch normalization layer in your final model. Try to figure out the best
possible architecture and hyperparameters given these building blocks!

In order to design your model, you should train your model for 1 epoch (batch size 32) and look at the final
test accuracy after training. This should take no more than 10 minutes, and should give you an immediate
sense for how fast your network converges and how good it is.

Set the probabilities of your dropout layers to 10 equally-spaced values p ∈ [0, 1], train for 1 epoch, and
report the final model accuracies for each.

You can perform all of your hyperparameter validation in this way: vary your parameters and train for an
epoch. After you’re satisfied with the model design, you should train your model for the full 10 epochs.

In your submission. Turn in the code of your model, the test accuracy for the 10 dropout probabilities
p ∈ [0, 1], and the final test accuracy when your model is trained for 10 epochs. We should have everything
needed to reproduce your results.

Discuss what you found to be the most effective strategies in designing a convolutional network. Which
regularization method was most effective (dropout, layerwise regularization, batch norm)?

Do you foresee any problem with this way of validating our hyperparameters? If so, why?

Hints:

• You are provided with a sample network that achieves a high accuracy. Starting with this network,
modify some of the regularization parameters (layerwise regularization strength, dropout probabil-
ities) to see if you can maximize the test accuracy. You can also add layers or modify layers (e.g.
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changing the convolutional kernel sizes, number of filters, stride, dilation, etc.) so long as the total
number of parameters remains under the cap of 1 million.

• You may want to read up on successful convolutional architectures, and emulate some of their design
principles. Please cite any idea you use that is not your own.

• To understand the input and output tensor shapes of your model in order to develop better models,
you can access each layer in the list ‘model.layers‘, and print ‘layer.input shape‘ and ‘layer.output shape‘.

• Make sure to normalize the input vectors as in 2C (dividing all values by 255).

• Dense layers take in single vector inputs (ex: (784, )) but Conv2D layers take in tensor inputs (ex: (28,
28, 1)): width, height, and channels. You will need to reshape the training/test X to a 4-dimensional
tensor (ex: (num examples, width, height, channels)) using ‘np.reshape‘. For the MNIST dataset, chan-
nels=1. Typical color images have 3 color channels, 1 for each color in RGB.

• If your model is running slowly on your CPU, try making each layer smaller and stacking more layers
so you can leverage deeper representations.

• Other useful CNN design principles:

– CNNs perform well with many stacked convolutional layers, which develop increasingly large-
scale representations of the input image.

– Dropout ensures that the learned representations are robust to some amount of noise.

– Batch norm is done after a convolutional or dense layer and immediately prior to an activa-
tion/nonlinearity layer.

– Max-pooling is typically done after a series of convolutions, in order to gradually reduce the size
of the representation.

– Finally, the learned representation is passed into a dense layer (or two), and then filtered down
to the final softmax layer.
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