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Today

• Some	useful	matrix	properties
– Useful	for	Homework	5

• Latent	Factor	Models
– Low-rank	models	with	missing	values

• Non-negative	matrix	factorization
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Recap:	Orthogonal	Matrix

• A	matrix	U	is	orthogonal	if	UUT =	UTU	=	I
– For	any	column	u:		uTu =	1
– For	any	two	columns	u,	u’:		uTu’	=	0
– U	is	a	rotation	matrix,	and	UT	is	the	inverse	rotation
– If	x’	=	UTx,	then	x	=	Ux’

4

Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 44)

Principal)Component)Analysis)Lecture)12:)Clustering)&)Dimensionality)Reduc<on)

44)

x

x’

Lecture	10:	Latent	Factor	Models	&	Non-Negative	Matrix	Factorization



Recap:	Orthogonal	Matrix

• Any	subset	of	columns	of	U	defines	a	subspace

Lecture	10:	Latent	Factor	Models	&	Non-Negative	Matrix	Factorization 5

Principal)Component)Analysis)Lecture)12:)Clustering)&)Dimensionality)Reduc<on)

50)

Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 44)u
1

T x

Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 50)

u1u1
T x

x ' =U1:K
T x

projU1:K x( ) =U1:KU1:K
T x

Transform	into	new	coordinates
Treat	U1:K as	new	axes

Project	x	onto	U1:K	in	original	space
“Low	Rank”	Subspace



Recap:	Singular	Value	Decomposition
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X =UΣVT

Orthogonal

DiagonalOrthogonal

X = x1,..., xN[ ]∈ ReD×N

xi −U1:KU1:K
T xi
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Recap:	SVD	&	PCA
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XXT = UΣVT( ) UΣVT( )
T
=UΣVTVΣUT =UΣ2UT

XXT =UΛUT PCA

X =UΣVT

Orthogonal

DiagonalOrthogonal

SVD

Orthogonal Diagonal



Recap:	Eigenfaces

• Each	col	of	U’	is	an	“Eigenface”
• Each	col	of	V’T =	coefficients	of	a	student
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Matrix	Norms
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• Frobenius	Norm

• Trace	Norm
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Each	σd is	guaranteed	to	be	non-negative
By	convention:	σ1	≥	σ2	≥	…	≥	σD ≥	0



Properties	of	Matrix	Norms
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Properties	of	Matrix	Norms
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Frobenius	Norm	=	Squared	Norm

• Matrix	version	of	L2	Norm:

• Useful	for	regularizing	matrix	models
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Recall:	L1	&	Sparsity

• w	is	sparse	if	mostly	0’s:
– Small	L0	Norm

• Why	not	L0	Regularization?
– Not	continuous!

• L1	induces	sparsity
– And	is	continuous!

argmin
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λ w
0
+ yi −w

T xi( )
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Trace	Norm	=	L1	of	Eigenvalues	

• A	matrix	X	is	considered	low	rank	if	it	has	few	non-
zero	singular	values:
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Other	Useful	Properties
• Cauchy	Schwarz:

• AM-GM	Inequality:

• Orthogonal	Transformation	Invariance	of	Norms:

• Trace	Norm	of	Diagonals
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Recap:	SVD	&	PCA

• SVD:

• PCA:

• The	first	K	columns	of	U	are	the	best	rank-K	
subspace	that	minimizes	the	Frobenius	norm	
residual:
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X −U1:KU1:K
T X
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Latent	Factor	Models
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Netflix	Problem

• Yij =	rating	user	i gives	to	movie	j

• Solve	using	SVD!
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http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Example

yij ≈ ui
Tvj



Actual	Netflix	Problem

• Many	missing	values!
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Collaborative	Filtering

• M	Users,	N	Items
• Small	subset	of	user/item	pairs	have	ratings
• Most	are	missing

• Applicable	to	any	user/item	rating	problem
– Amazon,	Pandora,	etc.

• Goal:	Predict	the	missing	values.
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Latent	Factor	Formulation

• Only	labels,	no	features

• Learn	a	latent representation	over	users	U	and	
movies	V	such	that:
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Connection	to	Trace	Norm

• Suppose	we	consider	all	U,V	that	achieve	perfect	
reconstruction:	Y=UVT

• Find	U,V	with	lowest	complexity:

• Complexity	equivalent	to	trace	norm:
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Proof	(One	Direction)
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Interpreting	Model

• Latent-Factor	Model	Objective

• Related	to:
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User/Movie	Symmetry	

• If	we	knew	V,	then	linear	regression	to	learn	U
– Treat	V	as	features

• If	we	knew	U,	then	linear	regression	to	learn	V
– Treat	U	as	features
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Optimization

• Only	train	over	observed	yij

• Two	ways	to	Optimize
– Gradient	Descent
– Alternating	optimization
• Closed	Form	(for	each	sub-problem)

– Homework	question
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Gradient	Calculation
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Closed	Form	Solution	(assuming	V	fixed):



Gradient	Descent	Options

• Stochastic	Gradient	Descent
– Update	all	model	parameters	for	single	data	point

• Alternating	SGD:
– Update	a	single	column	of	parameters	at	a	time
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∂ui = λui − ωijv j yij −ui
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Alternating	Optimization

• Initialize	U	&	V	randomly
• Loop
– Choose	next	ui or	vj
– Solve	optimally:

• (assuming	all	other	variables	fixed)
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Tradeoffs

• Alternating	optimization	much	faster	in	terms	of	
#iterations
– But	requires	inverting	a	matrix:

• Gradient	descent	faster	for	high-dim	problems
– Also	allows	for	streaming	data
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http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf



Recap:	Collaborative	Filtering

• Goal:	predict	every	user/item	rating

• Challenge:	only	a	small	subset	observed

• Assumption:	there	exists	a	low-rank	subspace	
that	captures	all	the	variability	 in	describing	
different	users	and	items
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Aside:	Multitask	Learning

• M	Tasks:

• Example:	personalized	recommender	system
– One	task	per	user:
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How	to	Regularize?

• Standard	L2	Norm:

• Decomposes	to	independent	tasks
– For	each	task,	learn	D	parameters
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How	to	Regularize?

• Trace	Norm:

• Induces	W	to	have	low	rank	across	all	task
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Recall:	Trace	Norm	&	Latent	Factor	Models

• Suppose	we	consider	all	U,V	that	achieve	perfect	
reconstruction:	W=UVT

• Find	U,V	with	lowest	complexity:

• Complexity	equivalent	to	trace	norm:
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How	to	Regularize?

• Latent	Factor	Approach

• Learns	a	feature	projection	x’	=	Vx
• Learns	a	K	dimensional	model	per	task
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Tradeoff

• D*N	parameters:

• D*K	+	N*K	parameters:

– Statistically	more	efficient
– Great	if	low-rank	assumption	is	a	good	one
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Multitask	Learning

• M	Tasks:

• Example:	personalized	recommender	system
– One	task	per	user:
– If	x	is	topic	feature	representation
• V	is	subspace	of	correlated	topics
• Projects	multiple	topics	together
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Reduction	to	Collaborative	Filtering

• Suppose	each	xi is	single	indicator	xi	=	ei
• Then:

• Exactly	Collaborative	Filtering!
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Latent	Factor	Multitask	Learning	vs
Collaborative	Filtering

• Projects	x	into	low-dimensional	subspace	Vx
• Learns	low-dimensional	model	per	task

• Creates	low	dimensional	feature	for	each	movie
• Learns	low-dimensional	model	per	user
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General	Bilinear	Models

• Users	described	by	features	z
• Items	described	by	features	x

• Learn	a	projection	of	z	and	x	into	common	
low-dimensional	space
– Linear	model	in	low	dimensional	space
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Why	are	Bilinear	Models	Useful?
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Story	So	Far:	Latent	Factor	Models

• Simplest	Case:	reduces	to	SVD	of	matrix	Y
– No	missing	values
– (z,x)	indicator	features

• General	Case:	projects	high-dimensional	
feature	representation	into	low-dimensional	
linear	model

Lecture	10:	Latent	Factor	Models	&	Non-Negative	Matrix	Factorization 45

S = (xi, zi,yi ){ }argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 yi − zi
TUTVxi( )

i
∑

2



Aside:	Non-Linear	“Projections”

• Vx is	a	linear	mapping	
– From	x	to	low-dimensional	space

• Can	also	learn	non-linear	mapping
– E.g.,	the	hidden	layer	activations	of	a	neural	net
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Figure 3: Visualization of a 2D embedding of the style space trained with strategic sampling computed with t-SNE [19]. The
embedding is based on 200,000 images from the test set. For a clear visual representation we discretize the style space into a
grid and pick one image from each grid cell at random. See the supplemental for the full version.

aggregated co-purchase data from Amazon. In particular,
we define two items to be compatible, comp(a, b), if “a and
b are frequently bought together” or “customers who bought
a also bought b”. These are terms used by Amazon.com.
Further, the relationships in the dataset do not come directly
from the users, but reflect Amazon’s recommendations [13],
which are based on item-to-item collaborative filtering. For
example, two items of similar style tend to be bought to-
gether or by the same customer. Many of the relationships
in the co-purchase graph are not based on visual similarity,
but on an implicit human judgment of compatibility. We ex-
pect the aggregated user behavior data to recover the com-
patibility relationships between products. However, there
are challenges associated with using user behavior data, as it
is very sparse and often noisy. While users tend to buy prod-
ucts they like, not buying a product does not automatically
imply a user dislikes the item. Specifically in the Amazon
dataset, two items that are not labeled as compatible are not
necessarily incompatible.

4. Learning the style space

Given a query image, we want to answer questions like:
“What item is compatible with the query item, but belongs
to a different category?” More formally, let the query image

be denoted by Iq and the item depicted in the image be q.
The membership of the item q to a category Ci is denoted by
q 2 Ci. Further, let comp(q, r) denote the boolean function
that items q and r are compatible with one another. Then,
our goal is to learn a function r = retrieve(Iq, j) to retrieve
an item r such that comp(q, r) and q 2 Ci, r 2 Cj , i 6= j.
To retrieve compatible items, we learn a feature transfor-
mation f : Iq ! sq from the image space I into the style
space S, where compatible items are close together. Then,
we can use the style space descriptor sq to look up compat-
ible neighbors to q.

The data on co-purchased items represents the aggre-
gated preferences of the Amazon customers and defines a
latent space that captures the customers’ consensus on style.
We are especially interested in the specific space that cap-
tures style compatibility of clothing items from different
categories. Since Siamese CNNs learn a space defined by
the training data, choosing the right sampling method of the
training examples is important.

In this section, we first describe our novel sampling strat-
egy to generate training sets that represent notions of style
compatibility across categories. Then, we show how to train
a Siamese CNN to learn a feature transformation from the
image space into the latent style space.

http://www.cs.cornell.edu/~andreas/iccv15.pdf
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Limitations	of	PCA	&	SVD
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All	features	
non-negative

PCA/SVD
Solution

Better	Solution?



Non-Negative	Matrix	Factorization

• Assume	Y	is	non-negative
• Find	non-negative	U	&	V
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CS	155	Non-Negative	Face	Basis
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Aside:	Non-Orthogonal	Projections

• If	columns	of	A	are	not	orthogonal,	ATA≠I
– How	to	reverse	transformation	x’=ATx?
– Solution:	Pseudoinverse!
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A =UΣVT

SVD

A+ =VΣ+UT

Σ+ =

σ1 0 ! 0
0 σ 2 ! "

" ! ! 0
0 # 0 σ D
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#
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σ + = 1/σ if σ > 0
0 otherwise

!
"
#

Pseudoinverse
A+T AT x =UΣ+VTVΣUT x

        =U1:KU1:K
T x

Intuition:	use	the	rank-K	orthogonal	
basis	that	spans	A.		



Objective	Function

• Squared	Loss:
– Penalizes	squared	distance

• Generalized	Relative	Entropy
– Aka,	unnormalizedKL	divergence
– Penalizes	ratio

• Train	using	gradient	descent
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argmin
U≥0,V≥0

ℓ(yij,ui
Tvj )

ij
∑

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf

ℓ(a,b) = (a− b)2

ℓ(a,b) = a log a
b
− a+ b



SVD/PCA	vs NNMF

• SVD/PCA:
– Finds	the	best	orthogonal	

basis	faces
• Basis	faces	can	be	neg.

– Coeffs can	be	negative
– Often	trickier	to	visualize
– Better	reconstructions	with	

fewer	basis	faces
• Basis	faces	capture	the	
most	variations

• NNMF:
– Finds	best	set	of	non-negative	

basis	faces
– Non-negative	coeffs

• Often	non-overlapping
– Easier	to	visualize
– Requires	more	basis	faces	for	

good	reconstructions

Lecture	10:	Latent	Factor	Models	&	Non-Negative	Matrix	Factorization 55



Non-Negative	Latent	Factor	Models
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S = (xi, zi,yi ){ }argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ ℓ yi, zi
TUTVxi( )

i
∑

• Simplest	Case:	reduces	to	NNMF	of	matrix	Y
– No	missing	values
– (z,x)	indicator	features

• General	Case:	projects	high-dimensional	non-
negative	features	into	low-dimensional	non-
negative	linear	model



Modeling	NBA	Gameplay	Using	
Non-Negative	Spatial	
Latent	Factor	Models
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Fine-Grained	
Spatial	Models

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	feet
58

• Discretize	court
– 1x1	foot	cells
– 2000	cells

• 1	weight	per	cell
– 2000	weights

Fs (x) :
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	feet
59

• Discretize	court
– 1x1	foot	cells
– 2000	cells

• 1	weight	per	cell
– 2000	weights

Fs (x) :

But	most	players	haven’t	
played	that	much!
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Visualizing	location	factors	L

Visualizing	players	BbL
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Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.
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Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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with high affinity to each of the latent factors.
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Training	Data

STATS	SportsVU
2012/2013	Season,	630	Games,	

80K	Possessions,	380	frames	per	possession
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Prediction

• Game	state:	x
– Coordinates	of	all	players
– Who	is	the	ball	handler

• Event:	y
– Ball	handler	will	shoot
– Ball	handler	will	pass	(to	whom?)
– Ball	handler	will	hold	onto	the	ball
– 6	possibilities

• Goal:		Learn	P(y|x)

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Logistic	Regression
(Simple	Version:	Just	for	Shooting)

P(y | x) =
exp F(y | x){ }
Z(x | F)

Z(x | F) = exp F(y ' | x){ }
y '∈{s,⊥}
∑

F(y ' | x) =
Fs (x) y ' = s
F⊥ y ' =⊥

"
#
$

%$

Offset	or	bias

P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }

Shot

Hold	on	to	ball
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Learning	the	Model

• Given	training	data:

• Learn	parameters	of	model:
argmin

Fs ,F⊥

λ
2
Fs

2
+ ℓ y,Fs (x)−F⊥( )
(x,y)∈S
∑

S = (x, y){ }

Log	Loss

Player	
Configuration What	Happened	

Next
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P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }
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Optimization	via	Gradient	Descent

Latent&Factor&Model&(Shoo1ng)&

•  Shoo$ng'Score:&

Fs' BT'

L'

='

D&

M&

D&

M&

K&

K&

Loca1on&Factors&

Player&Factors&

Fs (x) = Bb(x )
T Ll (x )

Assume&that&players&can&be&represented&by&K>dimensional&vector&
Learn&a&common&K>dimensional&latent&feature&representa1on&

∂Li = λ1Li −
∂ logP(y | x)

∂Li(x,y)
∑

argmin
B≥0,L≥0,F⊥

 λ
2

B 2
+ L 2( )  + ℓ y,Bb(x )

T Ll (x ) −F⊥( )
(x,y)
∑

∂ logP(y | x)
∂Li

= 1 y=s[ ] −P(s | x)( )Bb(x )

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

Where	are	Players	Likely	to	Receive	Passes?

Visualizing	Location	Factors	M

66

Enforce	Non-Negativity
(Accuracy	Worse)
(More	Interpretable)

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P
and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P
and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P
and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P
and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Tensor	Latent	Factor	Models
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Tensor	Factorization
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Tri-Linear	Model

• Prediction	via	3-way	dot	product:
– Related	to	Hadamard Product

• Example: online	advertising
– User	profile	z
– Item	description	x
– Query	q
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Summary:	Latent	Factor	Models

• Learns	a	low-rank	model	of	a	matrix	of	observations	Y
– Dimensions	of	Y	can	have	various	semantics

• Can	tolerate	missing	values	in	Y

• Can	also	use	features

• Widely	used	in	industry
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Next	Lecture

• Embeddings

• Word2Vec
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