Caltech

Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 14:
Hidden Markov Models



Sequence Prediction
(POS Tagging)

X = “Fish Sleep”
y=(N, V)

X = “The Dog Ate My Homework”
y=(D,N,V,D,N)

X = “The Fox Jumped Over The Fence”
y=(D,N,V,P,D,N)



Challenges

* Multivariable Output

— Make multiple predictions simultaneously

* Variable Length Input/Output
— Sentence lengths not fixed



Multivariate Outputs

* x = “Fish Sleep” POS Tags:
Det, Noun, Verb, Adj, Adv, Prep
* y=(N, V)
* Multiclass prediction:
Replicate Weights: Score All Classes: Predict via Largest Score:
- W - - b, - wi x = b, w! x—b,
W= Mfz b= b.z fxlw,b)= wzx.—bz argmax WX b,
: k
W by i W1T<x_b1< WIT(x—bK

* How many classes?



Multiclass Prediction

X = “Fish Sleep”
y = (N, V)

Multiclass prediction:

POS Tags:
Det, Noun, Verb, Adj, Adv, Prep

\

J

=6

— All possible length-M sequences as different class

— (D, D), (D, N), (D, V), (D, Adj), (D, Adv), (D, Pr)
(N, D), (N, N), (N, V), (N, Adj), (N, Adv), ...

LMclasses!
— Length 2: 62 = 36!




Multiclass Prediction

X = “Fish Sleep”

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

J

y =(N, V) |

|
L=6

xponential Explosionin #
(Not Tractable for Sequence Prediction)

— Length 2: 62 = 36!




Why is Naive Multiclass Intractable?

_uy £ 2 POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

— (b, b, D), (D, D, N), (D, D, V), (D, D, Adj), (D, D, Adv), (D, D, Pr)
- (D) N) D)) (DI N; N)I (D) N; V)) (D) N) AdJ)l (Dr N) AdV), (Dr Nr Pr)
- (D; V; D)I (D; Vr N)r (Dr \/; V)r (Dr \/; Ad.l)l (D; Vr AdV), (D; \/I Pr)

- (Nr D) D)I (NI Dr N)r (NI DI V)I (Nr D) AdJ)I (Nr D) Adv)l (Nr D} Pr)
— (N, N, D), (N,N,N), (N,N,V), (N,N, Adj), (N,N, Adv), (N, N, Pr)

Assume pronouns are nouns for simplicity.



Why is Naive Multiclass Intractable?

_uy £ 1) POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

- (D) D; D)r (D; D) N)) (DI DI V)I (D; D) AdJ)r (D; D) AdV), (DI D) Pr)

Exponentially Large Representation!

(Exponential Time to Consider Every Class)
(Exponential Storage)

Assume pronouns are nouns for simplicity.



Independent Classification

_uy £ 2 POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

* Treat each word independently (assumption)
— Independent multiclass prediction per word

HIH

— Predict for x="1" independently
— Predict for x="fish” independently
— Predict for x="often” independently

— Concatenate predictions.

Assume pronouns are nouns for simplicity.



Independent Classification

_uy £ 1) POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

* Treat each word independently (assumption)
— Independent multiclass prediction per word

(6 in our example)

Solvable using standard multiclass prediction.

Assume pronouns are nouns for simplicity. 10



Independent Classification

x="| fish often”

POS Tags:
Det, Noun, Verb, Adj, Adv, Prep

* Treat each word independently
— Independent multiclass prediction per word

y="“Det” 0.0
y=“Noun” 1.0
y=“Verb” 0.0
y="Ad]" 0.0
y=“Adv” 0.0
y=“Prep” 0.0

x="fish"”

0.0
0.75
0.25
0.0
0.0
0.0

0.0
0.0
0.0
0.4
0.6
0.0

Prediction: (N, N, Adv)

Correct: (N, V, Adv)

Why the mistake?

Assume pronouns are nouns for simplicity.

11



Context Between Words

_uy £ 2 POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

* Independent Predictions Ignore Word Pairs

— In Isolation:
* “Fish” is more likely to be a Noun

— But Conditioned on Following a (pro)Noun...
* “Fish” is more likely to be a Verb!

— “1st Order” Dependence (Model All Pairs)

« 2" Order Considers All Triplets
* Arbitrary Order = Exponential Size (Naive Multiclass)

Assume pronouns are nouns for simplicity.



15t Order Hidden Markov Model

X = (Xl,Xz,X4,X4,...,XM) (sequence of words)

y = (y1,y2,y3,y4,...,y'V') (sequence of POS tags)

P(Xi | y‘) Probability of state y'generating x

P(yi+1 | y‘) Probability of state y' transitioningto y'*!
P(y*|y°) y0is defined to be the Start state
P(End|y™)  Prior probability of yM being the final state

— Not always used

13



Graphical Model Representation

Optional
/ M

P(x,y) = P(End | y" )HP(yi Iyi'l)HP(xi |y

i=1 i=1



15t Order Hidden Markov Model

P(x,y) = P(End | y" )HP(yi Iyi_l)l_[ P(x'1y")

“Joint Distribution”

P(Xi | y‘) Probability of state y'generating x
P(y‘*l | y‘) Probability of state y' transitioningto y'*1
P(y1 | yO) y0 is defined to be the Start state

P(End|y™)  Prior probability of yM being the final state

15



15t Order Hidden Markov Model

M P Given a POS Tag Sequencey:
P(x | )7) = HP(X 1Y) Can compute each P(x'|y) independently!
i=1 (x' conditionallyindependent given vy

“Conditional Distribution on x given y”

P(Xi | y‘) Probability of state y'generating x
P(y‘*l | y‘) Probability of state y' transitioningto y'*1
P(y1 | y°) y0is defined to be the Start state

P(End|y™)  Prior probability of yM being the final state

16



15t Order Hidden Markov Model

% Additional Complexity of (#POS Tags)?

Models All State-State Pairs (all POS Tag-Tag pairs)
Models All State-Observation Pairs (all Tag-Word pairs)
N\ Same Complexity as Independent Multiclass
P(Xi | y‘) Probability of state y'generating x
P(y‘*l | y‘) Probability of state y' transitioningto y'*!
P(y*|y°) y0is defined to be the Start state

P(End|y™)  Prior probability of yM being the final state

17



Relationship to Naive Bayes

Xl X2 see XM
Reduces to a sequence of disjoint Naive Bayes models
(if we ignore transition probabilities)

18



P (word | state/tag)

e Two-word language: “fish” and “sleep”
 Two-tag language: “Noun” and “Verb”

x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

Slides borrowed from Ralph Grishman

Given Tag Sequence y:

1

P(“fish sleep” | (N,V)) =0.8*0.5

P(“fish fish” | (N,V)) =0.8*%0.5

P(“sleep fish” | (V\V)) =0.8*%0.5
|

P(“sleep sleep” | (N,N)) =0.2*0.2

19



Sampling

* HMMs are “generative” models
— Models joint distribution P(x,y)
— Can generate samples from this distribution
— First consider conditional distribution P(x|y)

Given Tag Sequence y = (N,V):

x="fish” 0.8 0.5 Sample each word independently:
x="sleep” 0.2 0.5 Sample P(x*| N) (0.8 Fish, 0.2 Sleep)
Sample P(x?| V) (0.5 Fish, 0.5 Sleep)

— What about sampling from P(x,y)?

20



Forward Sampling of P(y,x)

P(x,y) = P(End | y" )HP(yi Iyi_l)HP(xi | y')

Initialize y° = Start
x="fish” 0.8 0.5 Initializei=0

x="“sleep” 0.2 0.5

i=i+1

Sampley' from P(y'|y"?)
If y' == End: Quit
Sample x' from P(x'|y')
Goto Step 1

( end

Lk wnh e

Requires P(End|y')

Slides borrowed from Ralph Grishman

Exploits Conditional Ind.

21



Forward Sampling of P(y,x|L)
P(x,yIM) =M)ﬁp(},l’ |yi‘1)ﬁP(xi 1y

Initialize y° = Start
x="fish” 0.8 0.5 Initializei=0

x=“sleep” 0.2 0.5

i=i+1

If(i == M): Quit

Sample y' from P(y'|y'1)
Sample x' from P(x'|y')
Goto Step 1

Lk wnh e

Assumes no P(End|y)

Slides borrowed from Ralph Grishman

0.09<j/ Exploits Conditional Ind.

22



15t Order Hidden Markov Model

P(xk+1:M,yk+1:M |x1:k’y1:k) _ P(xk+1:M,yk+1:M |yk)

“Memory-less Model” — only needs y“to model rest of sequence

P(Xi | y‘) Probability of state y'generating x
P(y‘*l | y‘) Probability of state y' transitioningto y'*1
P(y1 | y°) y0 is defined to be the Start state

P(End|y™)  Prior probability of yM being the final state

23



Viterbi Algorithm



Most Common Prediction Problem

* Given input sentence, predict POS Tag seq.

argmax P(y | x)

Y

* Naive approach:
— Try all possible y’s
— Choose one with highest probability
— Exponential time: LM possible y’s

25



Recall: Bayes’s Rule

argmax P(y|x)=argmax PO, x)
y y P(x)

= argmax P(y, x)

y

= argmax P(x | y)P(y)
y

M
Pixly) = | | Pexily?)
=1

M
P(y) = PENDIY | [ POy
=1

26



M M
argmax P(y,x) =argmax | | P(y'| yi‘l)H P(x'1y")
y i=1 i=1

y

M M
=argmaxargmax | | P(Y' 1y")| | P(x'1y)
yM yl:M—l ];[ ];:_i[
= argmax argmax P(y" [y )P 1y")P(y™ " 1 x™)
yl:M—l

yM

P(yl:k |x1:k) _ P(xlzk |y1:k)P(y1:k) P(xlzk Iyl:k) _ ﬁp(xi |yi)
i=1

P(yl:k) =Hp(yi+1 |yi)

Exploit Memory-less Property:
The choice of yM only depends on y**M-1 via P(yM|yM-1)!




Dynamic Programming

* Input: x = (x1,x%,x3,...,xM)

 Computed: best length-k prefix endingin each Tag:

— Examples:

Y (V)= (argmax PO @V, x™ )) @V YHN)= (argmax PO @ N, x™)
Lik— yl:k—l
Sequence Concatenation /

a ™~

* Claim: ?k”(v):[

|

1:k+1 )

argmax P(y" @V, x

yl:k e{fk(T)}T

argmax P(ylik’xlik)P(ka — V | yk)P(xk+l |yk+1 — V)

[P T)) L ' )

Pre-computed

%

Jow

@V

Recursive Definition!

28



Solve:

Store each
Y1(2) & P(Y(2),x%)

Y3 (V)=

Y(2) is just Z

argmax P(y',x" )P(y’ =V IyHP(x’1y* =V)|®V

yle{?l(r)}Tl ,

29



Solve:

Store each
Y1(2) & P(Y(2),x%)

Y(2) is just Z

Y2(V)=| argmax Py, x)P(y' =VIyHP(x* 1y* =V) @V

yle{?l(r)}Tl ,

y*=N

Ex: Y2(V) = (N, V)

30



Solve: Y*(V)=

Store each
Y1(2) & P(Y(2),x%)

argmax P(y",x")P(y’ =V Iy)P(x’ 1y’ =V)

ey,

Store each
Y2(2) & P(Y2(2)x12)

Ex: Y2(V) = (N, V)

@V

31



Solve: Y*(V)=

Store each
Y1(2) & P(Y(2),x%)

argmax P(y",x")P(y’ =V Iy)P(x’ 1y’ =V)

ey,

Store each
Y2(2) & P(Y2(2)x12)

@V

Claim: Only need to check
solutions of Y2(Z), Z=V,D,N

Ex: Y2(V) = (N, V)

32



Solve:  Y3(V)=| argmax P(y,x")P(y’ =V IyHP(x' 1y’ =V)|®V
YREPM),
Store each Store each Claim: Only need to check
1(2) & P(Y3(2)xY) ¥2(z) & P(Y2(2)x*2) | solutions of Y2(Z), Z=V,D,N

O :/Q

[ v)

-
-

Suppose Y3(V) = (V,VV)...
...prove that Y3(V) = (N,V,V) has higher prob.

Proof depends on 1t order property
* Prob. of (VV,V) & (N,V,V) differ in 3 terms

* P(y*[y®), P(x*|y'), P(y?]y')
* None of these depend on y3!

33



Y"(V)=| argmax PO XM PG =VIy" P& 1y =V)P(End|y" =V)|®V
yI:M—le{Y‘M—l(T)}

T
\

Optional
Store each Store each Store each

1(2) & P(Y1(2),xY) 72(2) & P2(2)x12)  ¥3(2) & P(T3(2),x3)

Y1(V) Y2(V)

Y2(N)

Ex: Y2(V) = (N, V) Ex: Y3(V) = (D,N,V)




Viterbi Algorithm

* Solve: argmaxP(y | x) = argmax P(y,x)
y y P(x)

= argmax P(y,x)
y

=argmax P(x|y)P(y)

y

e Fork=1..M

— lteratively solve for each Yk(2)
* Z loopingover every POS tag.

* Predict best YM(2)

* Also known as Mean A Posteriori (MAP) inference

35



Numerical Example

x= (Fish Sleep)

0.2 0.1

: > 0.7
verb
w
0.1 0.1

Slides borrowed from Ralph Grishman

( end

36



x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

start 1
verb 0
noun 0
end 0

Slides borrowed from Ralph Grishman .



x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

Token 1: fish

start | 0
verb O\ 2*.5
noun 0O '8*8

end 0 0

Slides borrowed from Ralph Grishman 28



x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

Token 1: fish

start 1 0
verb
noun 0 .64
end 0 0

Slides borrowed from Ralph Grishman 2



0.1

Token 2: sleep

(f “fish’ isverb) | U 1
start 1 0
verb 0 \®
noun 0

end 0 0

Slides borrowed from Ralph Grishman

x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

0
(D.1%5
64 (a2

40



( end x=“fish” 0.8 0.5

x=“sleep” 0.2 0.5
Token 2: sleep
Gf “fish’ isverb) | O 1 2 3
start | 0 0
verb 0 \@ 005
noun 0 .64 .004

end 0 0 -

Slides borrowed from Ralph Grishman "



(end)  |x=“fish” 0.8 0.5

x="“sleep” 0.2 0.5
Token 2: sleep
(if “fish” is anoun)| U 1 2 3
start 1 0 0
verb 0 \ 1 005

noun 0 :014*2
end 0 0 -

Slides borrowed from Ralph Grishman "



(end)  |x=“fish” 0.8 0.5

x="“sleep” 0.2 0.5
Token 2: sleep
(if “fish” is anoun)| O 1 2 3
start 1 0 0
verb 0 \ 1 005
256
noun 0 .64 004
0128

end 0 0 -

Slides borrowed from Ralph Grishman 3



(ad) | x=“fish”

x="“sleep”

0.1

Token 2: sleep

take maximum, 0 1 9)
set back pointers
start | 0 0
verb 0 \ 1 ‘995_-256
/'
noun 0 64 L —90—
0128

end 0 0 -

Slides borrowed from Ralph Grishman

44



(end)  |x=“fish” 0.8 0.5

x="“sleep” 0.2 0.5
Token 2: sleep
take maximum, 0 1 9) 3
set back pointers
start 1 0 0
verb 0 \ 1 256

noun 0 .64 44.0128
end 0 0 -

Slides borrowed from Ralph Grishman 4c



(end)  |x=“fish” 0.8 0.5

x="“sleep” 0.2 0.5
Token 3: end
0 | 2 3
start | 0 0 0
verb 0 \\ 1 .25 -

/

noun 0 64 —.0128 -

end 0 0 o 256%7
0128%.1

Slides borrowed from Ralph Grishman 16



x="fish”

0.1

Token 3: end
take maximum, 0
set back pointers

start 1

verb 0‘\\\

noun 0

end 0

Slides borrowed from Ralph Grishman

x="“sleep”

—.0128

256*.7

47



x="fish” 0.8 0.5

x="“sleep” 0.2 0.5
Decode:
fish = noun 0 1 p) 3
sleep = verb
start | 0 0 0

verb O\.l-

noun 0 .0128 -

end 0 0 - 256%.7

Slides borrowed from Ralph Grishman 48



0.2 0.1

0.8

0.7 end x="fish” 0.8 0.5

0.8 nonnd

sleep = verb

start 1 0 0 0

Small numbers get repeatedly multiplied

together — exponentially small!

Slides borrowed from Ralph Grishman "



Viterbi Algorithm
(w/ Log Probabilities)

* Solve: argmaXP(y | x) = argmax P(y,x)
Y y P(x)

= argmax P(y,x)
y

= argmax log P(x|y)+1log P(y)
« Fork=1..M y

— lteratively solve for each log(Y¥(2))
* Z loopingover every POS tag.

e Predict best log(YM(2))

— Log(YM(Z)) accumulates additively, not multiplicatively

50



Recap: Independent Classification

_uy £ 2 POS Tags:
X= I fISh Often Det, Noun, Verb, Adj, Adv, Prep

* Treat each word independently
— Independent multiclass prediction per word

P(y|x) x=“1" x=“fish” | x="often” L.

—Det” 0.0 0.0 0.0 Prediction: (N, N, Adv)
y=“Noun” 1.0 0.75 0.0

y="Verb” 0.0 0.25 0.0 Correct: (N, V, Adv)
y="Ad]" 0.0 0.0 0.4

y="Adv” 0.0 0.0 0.6 Mistake due to not
y="Prep” 0.0 0.0 0.0 modeling multiple words.

Assume pronouns are nouns for simplicity. o



Recap: Viterbi

* Models pairwise transitions between states
— Pairwise transitions between POS Tags

— “1st order” model
P(x,y) = P(End | yM )H P(y'l y’_l)n P(x'1y")
=1 i=1

x="| fish often” Independent: (N, N, Adv)

HMM Viterbi: (N, V, Adv)

*Assuming we defined P(x,y) properly



Training HMMs



Supervised Training

* Given: S = {(X,-ayi)}:

Word Sequence POS Tag Sequence

(Sentence)

e Goal: Estimate P(x,y) using S
P(x,y)=P(End | y")| [ PG/ 1y™H] [ PG 1y
i=1 i=1

e Maximum Likelihood!

54



Aside: Matrix Formulation

e Define Transition Matrix: A
—  A,, = P(y*=a|y'=b) or —Log( P(y'**=a|y'=b) )

y"et=“Noun” 0.09 0.667

yrext=“Verb”  0.91 0.333

e Observation Matrix: O
— 0, =P(x=w|y'=z) or—Log(P(x'=w|y'=z) )

x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

55



Aside: Matrix Formulation
P(x,y) = P(End | y" )H Py Iyi"l)l—[ P(x'1y")

P(x,y) = P(End | y" )HP(yi Iyi_l)HP(xi 1y")

Log prob. formulation

Eachentry of A is
define as—log(A)

M M
~ log(P(x, }’)) = AEnd,yM + EAyi’yi—l + E Oxi’yi
i=1 i=1

56



Maximum Likelihood

argmax H P X y = argmax H P(End | y" )HP(y |y )HP(x 1y')

A0 (x,y)ES A0 (x,y)ES

e Estimate each component separately:

N M, N M,
EEI[(yjl =a |n y,—b)] E : Xj=
A = j=1 i=0 _ 0, = =1 i=l

(&
E iy EE

e (Derived via minimizing neg. log likelihood)

57



Recap: Supervised Training

argmax H P X, y = argmax H P(End | y" )HP(y |y )HP(x ly")

A0 A0

(x,y)ES (x,y)ES

 Maximum Likelihood Training
— Counting statistics
— Super easy!
— Why?

 What about unsupervised case?

58



Recap: Supervised Training

argmax H P X, y = argmax H P(End | y" )HP(y |y )HP(x ly")

A0 A0

(x,y)ES (x,y)ES

 Maximum Likelihood Training
— Counting statistics
— Super easy!
— Why?

 What about unsupervised case?

59



Conditional Independence Assumptions

argmax H P(x,y)=argmax H P(End | y" )HP(y |y 1)1_[P(x ly")

A0 (xyESs A0 (xy)Es

* Everything decomposesto products of pairs
— l.e., P(y'*'=a|y'=b) doesn’t depend on anything else

e Can just estimate frequencies:

— How often y'*1=a when y'=b over training set

— Note that P(y'*1=a|y'=b) is a common model across all
locations of all sequences.

60



Conditional Independence Assumptions

argmax H P X y = argmax H P(End | y" )HP(y |y'"” )HP(x 1y")

A0 (xyES A0 (xyES

Observations O: #Words x #Tags

Avoids directly model word/word pairings

#Tags = 10s
#Words = 10000s

61



Unsupervised Training

* What about if noy’s? §=1x }N
— Just a training set of sentences / o

Word Sequence
(Sentence)

 Still want to estimate P(x,y)

— How?
— Why? argmaXHP(xi) = argmaxHEP(xi,y)

62



Unsupervised Training

* What about if noy’s? §=1x }N
— Just a training set of sentences / o

Word Sequence
(Sentence)

 Still want to estimate P(x,y)

— How?
— Why? argmaXHP(xi) = argmaxHEP(xi,y)

63



Why Unsupervised Training?

Supervised Data hard to acquire
— Require annotating POS tags

Unsupervised Data plentiful

— Just grab some text!

Might just work for POS Tagging!
— Learn y’s that correspond to POS Tags

Can be used for other tasks

— Detect outlier sentences (sentences with low prob.)
— Sampling new sentences.

64



EM Algorithm (Baum-Welch)

* If we had y’s = max likelihood.
* If we had (A,O) = predict y’s

Chicken vs Egg!

1. Initialize A and O arbitrarily

Expectation Step
4

. Predict prob. of y’s for each training x

Maximization Step

2
3. Usey’s to estimate new (A,O)
4

. Repeat back to Step 1 until convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm 65



Expectation Step

* Given (A,O)
* For training x=(x4,...,x™)
— Predict P(y') for each y=(y*,...yM)

x! X2 xt
P(y'=Noun) 0.5 0.4 0.05
P(y'=Det) 0.4 0.6 0.25
P(y'=Verb) 0.1 0.0 0.7

— Encodes current model’s beliefs about y
— “Marginal Distribution” of each y'

66



Recall: Matrix Formulation

e Define Transition Matrix: A
— A,, = P(y"*'=a|y'=b) or-Log( P(y*'=a|y'=b))

y"et=“Noun” 0.09 0.667

yrext=“Verb”  0.91 0.333

e Observation Matrix: O
— 0,, = P(x=w|y'=z) or —Log(P(x'=w|y'=z) )

x="fish” 0.8 0.5

x="“sleep” 0.2 0.5

67



Maximization Step

* Max. Likelihood over Marginal Distribution

2 21 20 2 el
Supervised: A, ="""1 O,. ="
2301 2214

Marginals Marginals

N M; / NN ! .

> SPG by =a) 2 3
. =1 i

Unsupervised: 4, ===
EEP(y,
=1 i=0

Marginals

68



Computing Marginals
(Forward-Backward Algorithm)

* Solving E-Step, requires compute marginals

x! x2 xt
P(y'=Noun) 0.5 0.4 0.05
P(y'=Det) 0.4 0.6 0.25
P(y'=Verb) 0.1 0.0 0.7

e Can solve using Dynamic Programming!

— Similar to Viterbi

69



Notation

Probability of observing prefix x!'and having the i-th state be y'=Z
. i _i
o ()=Px",y =Z1A,0)

Probability of observing suffix x*1:M given the i-th state beingy'=Z
p.()=P(x"™ 1y' =Z,A,0)

Computing Marginals =Combiningthe Two Terms
a (i)p, (i)
Y a.()B. ()

!

<

POy =zlx)=

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
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Notation

Probability of observing prefix x!'and having the i-th state be y'=Z
. i _i
o ()=Px",y =Z1A,0)

Probability of observing suffix x*1:M given the i-th state beingy'=Z
p.()=P(x"™ 1y' =Z,A,0)

Computing Marginals =Combiningthe Two Terms

__a,(- DP(y' =bly™ =a)P(x' | y' =b)B, (i)
E a, (i-DP( =b'ly™ =a"\P(x' |y =b",.(i)

a'b'

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
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Forward (sub-)Algorithm

* Solve for every: a.(i))=P(x",y' =Z1A,0)

N aively: Exponential Time!
a (i) = P(x",y'=Z1A,0)= E P(x",y' =Z,y""1A,0)
yl:i—l

e Can be computed recursively (like Viterbi)

a,()=P@y =zIy)P(x'ly'=2)=0, A

Z,start

L
o, (i+1)= ox,.ﬂ,zza (DA,
j=1
\ Viterbi effectively replaces sum with max
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Backward (sub-)Algorithm

* Solve for every: B.(i)=P(x"™™ 1y =Z,A,0)

¢ Naively: Exponential Time!
ﬁz(i) _ P(xi+1:M |yi _ Z,A,O) _ E P(xi+1:M,yi+1:M |yi _ Z,A,O)
yi+1:L

e Can be computed recursively (like Viterbi)
:Bz(M) =1

B.()=Y B+ DA, .0,
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Forward-Backward Algorithm

* Runs Forward a (i)=P(x",y =Z1A,0)
* Runs Backward B.()=P(x"™ 1y =Z,A,0)

* For each training x=(x1,...,xM)

— Computes each P(y') for y=(y31,...,yM)
a (). (i)
Y a.()B. )

!

<

P(y' =zlx)=
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Recap: Unsupervised Training

* Train using only word sequences: § = {xi}fvl
1=

/I

Word Sequence
(Sentence)

e y’s are “hidden states”

— All pairwise transitions are through y’s
— Hence hidden Markov Model

* Train using EM algorithm

— Convergeto local optimum
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Initialization

e How to choose #hidden states?
— By hand

— Cross Validation
* P(x) onvalidation data
* Can compute P(x) via forward algorithm:

P(x) = EP(x,y) = Eaz (M)P(End | y" = 7)
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Recap: Sequence Prediction & HMMs

* Models pairwise dependencesin sequences

e ) POS Tags:
X= I f|Sh Often Det, Noun, Verb, Adj, Adv, Prep

Independent: (N, N, Adv)
HMM Viterbi: (N, V, Adv)

 Compact: only model pairwise betweeny’s
* Main Limitation: Lots of independence assumptions

— Poor predictive accuracy



Next Lectures

* Thursday: Hidden Markov Models

— (Unstructured Lecture)

* Next Tuesday: Deep Generative Models
— Recent Applications

e Recitation Thursday

— Recap of Viterbi and Forward/Backward



